A superfamily of voltage-gated sodium channels in bacteria.
نویسندگان
چکیده
NaChBac, a six-alpha-helical transmembrane-spanning protein cloned from Bacillus halodurans, is the first functionally characterized bacterial voltage-gated Na(+)-selective channel. As a highly expressing ion channel protein, NaChBac is an ideal candidate for high resolution structural determination and structure-function studies. The biological role of NaChBac, however, is still unknown. In this report, another 11 structurally related bacterial proteins are described. Two of these functionally expressed as voltage-dependent Na(+) channels (Na(V)PZ from Paracoccus zeaxanthinifaciens and Na(V)SP from Silicibacter pomeroyi). Na(V)PZ and Na(V)SP share approximately 40% amino acid sequence identity with NaChBac. When expressed in mammalian cell lines, both Na(V)PZ and Na(V)SP were Na(+)-selective and voltage-dependent. However, their kinetics and voltage dependence differ significantly. These single six-alpha-helical transmembrane-spanning subunits constitute a widely distributed superfamily (Na(V)Bac) of channels in bacteria, implying a fundamental prokaryotic function. The degree of sequence homology (22-54%) is optimal for future comparisons of Na(V)Bac structure and function of similarity and dissimilarity among Na(V)Bac proteins. Thus, the Na(V)Bac superfamily is fertile ground for crystallographic, electrophysiological, and microbiological studies.
منابع مشابه
Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملLtter Phylogeny Unites Animal Sodium Leak Channels with Fungal Calcium Channels in an Ancient, Voltage-Insensitive Clade
Proteins in the superfamily of voltage-gated ion channels mediate behavior across the tree of life. These proteins regulate the movement of ions across cell membranes by opening and closing a central pore that controls ion flow. The best-known members of this superfamily are the voltage-gated potassium, calcium (Cav), and sodium (Nav) channels, which underlie impulse conduction in nerve and mus...
متن کاملEvolutionarily conserved intracellular gate of voltage-dependent sodium channels
Members of the voltage-gated ion channel superfamily (VGIC) regulate ion flux and generate electrical signals in excitable cells by opening and closing pore gates. The location of the gate in voltage-gated sodium channels, a founding member of this superfamily, remains unresolved. Here we explore the chemical modification rates of introduced cysteines along the S6 helix of domain IV in an inact...
متن کاملPhylogeny unites animal sodium leak channels with fungal calcium channels in an ancient, voltage-insensitive clade.
Proteins in the superfamily of voltage-gated ion channels mediate behavior across the tree of life. These proteins regulate the movement of ions across cell membranes by opening and closing a central pore that controls ion flow. The best-known members of this superfamily are the voltage-gated potassium, calcium (Ca(v)), and sodium (Na(v)) channels, which underlie impulse conduction in nerve and...
متن کاملEvolutionary Analysis of Biological Excitability
Excitability is an attribute of life, and is a driving force in the descent of complexity. Cellular electrical activity as realized by membrane proteins that act as either channels or transporters is the basis of excitability. Electrical signaling is mediated by a wave of action potentials, which consist of synchronous redistribution of ionic gradients down ion channels. Ion channels select for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 10 شماره
صفحات -
تاریخ انتشار 2004